Hisashi's WebLog
2017年5月25日木曜日
フーリエ・ラプラス解析 第6回
フーリエ級数の平均2乗収束について.
ここは厳密にやるのは難しく, 可積分関数の連続関数による近似, 連続関数の三角多項式による近似, 等の基本的な事実を紹介したあと, 内積の線形代数的な取り扱いを使って, 三角多項式近似が最良近似であることを紹介した.
フーリエ級数の平均2乗収束はこれらの事実から導かれる.
なお, 以上の計算においてはε-δ法による収束の定義が用いられる.
これについても若干触れた.
次回は, 小テストを実施する.
1 件のコメント:
不真面目な学生
2017年5月31日 1:26
εーδの説明分かりやすかったです。(最初にεδを学習したときに、それを聞きたかった。)
返信
削除
返信
返信
コメントを追加
もっと読み込む...
次の投稿
前の投稿
ホーム
登録:
コメントの投稿 (Atom)
εーδの説明分かりやすかったです。(最初にεδを学習したときに、それを聞きたかった。)
返信削除